We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Under the hood of vector search with JVector

Formale Metadaten

Titel
Under the hood of vector search with JVector
Serientitel
Anzahl der Teile
64
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
- ANN (approximate nearest neighbor) vector search is totally different from the problems that we're used to solving with databases. You can't just throw a B-tree at it and call it a day. - It's a super young field with arguably the most important breakthrough (HNSW) created only eight years ago. The best commercial products have started to ship designs based on DiskANN, which is five years old. - Nobody really knows the best way to solve several important problems (how to build indexes larger than memory? how to partition across machines? How to combine indexes to ""garbage collect"" obsolete data without a full rebuild?) - The importance of ANN to RAG (retrieval augmented generation) in generative AI is supercharging interest in the field and we should expect the state of the art to advance quickly.