We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Learning to Rank for Reddit Search: A Project Retro

Formale Metadaten

Titel
Learning to Rank for Reddit Search: A Project Retro
Serientitel
Anzahl der Teile
64
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In today’s AI based world, Reddit stands out as a deep catalog of human, subjective information. Whether product reviews or the deeply personal - Reddit searchers want to connect with other humans, not generic AI based answers. We at Reddit would like the site-search experience to be better, so you don’t need to add “Reddit” to your Google search. That’s what we’re trying to do with Learning to Rank: turning relevance into a repeatable, data-driven solution. The journey hasn’t been an easy one. We want to share our painful lessons learned working with training data, developing features, the Solr Learning to Rank plugin, scaling Learning to Rank to 1000s of QPS, and more. Hopefully, you can learn from the egg we constantly found on our faces! See how our scrappy, understaffed team has been slowly turning LTR from a science project into a repeatable process of constant, data-informed improvement. From a lab to an assembly line, come and learn from our painful lessons big and small.