We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Enhancing RAG with Neo4j Knowledge Graph

Formale Metadaten

Titel
Enhancing RAG with Neo4j Knowledge Graph
Serientitel
Anzahl der Teile
64
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In this talk, we'll examine the synergy between knowledge graphs, semantic search and retrieval-augmented generation. We will investigate how integrating an automatically generated knowledge graph derived from a corpus of documents enhances RAG capabilities. Specifically, we will look at how this integration can overcome common limitations of standard RAG approaches, enabling the extraction of "global" trends and insights or those that stem from combining pieces of information from several documents (i.e. ones that are impossible to answer by simply injecting information from a number of unconnected retrieved documents). As tools we will use Neo4j graph database as the knowledge graph combined with vector indices, Langchain for business logic flow.