We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Prototype to Production for RAG applications

Formale Metadaten

Titel
Prototype to Production for RAG applications
Serientitel
Anzahl der Teile
18
Autor
Mitwirkende
Lizenz
CC-Namensnennung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Talk recorded at the Swiss Python Summit on October 18th, 2024. Licensed as Creative Commons Attribution 4.0 International. --------- Abstract: Retrieval Augmented Generation (RAG) has been used to mitigate hallucination issues from LLMs and rapidly provide LLMs with external knowledge that were not part of the pre-training data. While tutorials offer convenient ways to build POCs quickly, transitioning these prototypes to production environments often catches us off-guard with unforeseen challenges. This talk takes a deeper dive into the topics that are often missing from cookbooks and tutorials yet are crucial in scaling your RAG prototype to production. Our discussion will use real examples to help you better understand some of the best practices in production RAG for observability, security, scalability, and fault tolerance. --------------------- About the speaker(s): I am currently a Staff Data Scientist at Wrike, where I work on enabling new generative AI features in production. I also help maintain MTEB and organize PyData Tallinn in my spare time. My background is in Aerospace Engineering and Machine Learning and I hold undergraduate and graduate degrees from the University of Toronto.