We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Safety of AI Systems with Executable Causal Models and Statistical Data Science

Formale Metadaten

Titel
Safety of AI Systems with Executable Causal Models and Statistical Data Science
Serientitel
Anzahl der Teile
5
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produktionsjahr2024

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
AI systems that learn from data present a unique challenge for safety, as there is no specific design artifact, model, or code to analyse and verify. The safety assurance challenges become even more complex in cooperative intelligent systems, like collaborative robots and autonomous vehicles. These systems are often loosely interconnected, allowing them to form and dissolve configurations dynamically. Evaluating the consequences of failures in largely unpredictable configurations is a daunting task. Intentional or unintentional interactions between systems, along with newly learned behaviours and varying environmental conditions, can lead to unpredictable or emergent behaviours. Achieving complete safety assurance of such systems of systems at the design stage through traditional model-based methods is unfeasible. In this talk, I will explore these challenges and introduce executable causal models and statistical techniques that may help address these emerging issues.
Schlagwörter