We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Unveiling Scholarly Insights: The Role of Enhanced Author Profiles in Leveraging Linked Data and Persistent Identifiers

Formale Metadaten

Titel
Unveiling Scholarly Insights: The Role of Enhanced Author Profiles in Leveraging Linked Data and Persistent Identifiers
Serientitel
Anzahl der Teile
13
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The exponential growth of data on entities, persons, etc. is accompanied by a parallel surge in data quality, leading to more accurate clustering, description, accessibility, and interconnectivity. This enhancement extends beyond traditional library ecosystem data, such as authority files, to encompass a broad spectrum of non-library data sources like Wikidata, DBpedia, and OpenAlex. In this context, we present an approach that leverages linked data principles, persistent identifiers, and knowledge-based systems to construct comprehensive representations of author profiles. Rather than resorting to localized storage with isolated data silos, our approach prioritizes the direct ingestion of information from its original sources. This approach, complemented by the integration of harvested data with authors' research outputs indexed in our discovery portal EconBiz, yields a nuanced and thorough overview. The application of Natural Language Processing (NLP), text mining, and Machine Learning (ML) techniques further refines insights, offering diverse perspectives and deepening the understanding of authors. Author profiles provide a multifaceted gateway to understanding a scholar's research contributions. Visual representations enable quick identification of expertise areas and output. Thesaurus- or ML-enriched word tags enhance search capabilities, allowing users to refine queries based on semantically related terms. Co-authorship network visualizations and other features, such as “related authors” expand exploration options, uncovering scholars with similar research interests who are not necessarily co-authors. Additionally, the discovery of other persistent identifiers unlocks new avenues for profile enrichment with diverse information, including citation metrics and research data. We will present the main functionalities of the EconBiz Author Profiles including a glimpse of new developments.
Schlagwörter