We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Python Observability Perfected: Advanced Techniques with OpenTelemetry

Formale Metadaten

Titel
Python Observability Perfected: Advanced Techniques with OpenTelemetry
Serientitel
Anzahl der Teile
56
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In the evolving landscape of serverless and cloud technologies, Python stands out as a key player for building microservices. Yet, as these systems grow, tracking their performance and catching bugs become increasingly complex. This presentation introduces OpenTelemetry, a rising standard that equips us with tools to monitor not just Python code but also vital components like databases and message queues. It's designed to blend seamlessly with Python, offering a unified method to collect, process, and share telemetry data across different parts of a distributed system. This talk starts by discussing the importance of observability in modern distributed environments. Then, we'll dive into OpenTelemetry, focusing on its Python SDK's basics. We'll walk through a hands-on example, showing how to integrate OpenTelemetry into a Python project for automated and manual tracking. Finally, we'll explore how to leverage the insights gained from OpenTelemetry for more effective system monitoring, ensuring smoother operation and easier troubleshooting.