We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Is RAG all you need? A look at the limits of retrieval augmented generation

Formale Metadaten

Titel
Is RAG all you need? A look at the limits of retrieval augmented generation
Serientitel
Anzahl der Teile
131
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Retrieval-Augmented Generation (RAG) is a widely adopted technique to expand the knowledge of LLMs within a specific domain while mitigating hallucinations. However, it is not a silver bullet that is often claimed to be. A chatbot for developer documentation and one for medical advice may be based on the same architecture, but they have vastly different quality, transparency and consistency requirements. Getting RAG to work well on both can be far from trivial. In this talk we will first understand what RAG is, where it shines and why it works so well in these applications. Then we are going to see the most common failure modes and walk through a few of them to evaluate whether RAG is a suitable solution at all, how to improve the quality of the output, and when it's better to go for a different approach entirely.