We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

From Text to Context: How We Introduced a Modern Hybrid Search

Formale Metadaten

Titel
From Text to Context: How We Introduced a Modern Hybrid Search
Serientitel
Anzahl der Teile
131
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Customers only buy the products they are able to find. Improving the search functions on the website is crucial for user-friendliness. In our talk we present the lessons learnt from improving the search of our global online marketplace, which sells 20 million products per year. We moved from a traditional word-match based approach (BM25) to a modern hybrid solution that combines BM25 with a semantic vector model, an open-source language model that we fine-tuned to our domain. With numerous references to current literature, we will explain how we designed our new system and solved the multiple challenges we encountered on both the ML and engineering side (data pipeline encoding documents, live service encoding queries, integration with search engine). Our system is based on OpenSearch, the lessons can be applied to other search engines as well. In particular the presentation will cover: - Status and Short-Comings of our old Search - Introduction of Hybrid Search - Our Machine Learning Solution - Architecture and Implementation (with special consideration of latency) - Learnings and Next Steps