We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Don't fix bad data, do this instead

Formale Metadaten

Titel
Don't fix bad data, do this instead
Serientitel
Anzahl der Teile
131
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In a time where GenAI is quickly growing in popularity, along with prescriptive analytics and online ML models, the question is raised whether we still need to care about data quality? We strongly believe that the answer is yes, and even more so than before! Our expectations of data are high, and this often leads to frustrations when reality does not meet these expectations. In the pursuit of data quality, expectations must be grounded in reality. It is often the case that a gap exists between anticipated outcomes and the actual data reality, which leads to frustration and mistrust. This talk delves into pragmatic strategies that can be employed to bridge this gap. The talk will discuss both the technical (hard) and cultural (soft) measures implemented to uphold these standards. Key Takeaways: 1. Integration tests serve as a proactive barrier, preempting the violation of data contracts, unlike reactive data quality checks. 2. Prioritisation is crucial; a product-centric mindset is key when evaluating the balance between resource investment and potential gain. 3. Data quality management is requiring both hard and soft measures Are you a data scientist, software engineer, product manager, or data engineer? Join us in this discussion; data quality concerns us all.