We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Deconstructing the text embedding models

Formale Metadaten

Titel
Deconstructing the text embedding models
Serientitel
Anzahl der Teile
131
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Selecting the optimal text embedding model is often guided by benchmarks such as the Massive Text Embedding Benchmark (MTEB). While choosing the best model from the leaderboard is a common practice, it may not always align perfectly with the unique characteristics of your specific dataset. This approach overlooks a crucial yet frequently underestimated element - the tokenizer. We will delve deep into the tokenizer's fundamental role, shedding light on its operations and introducing straightforward techniques to assess whether a particular model is suited to your data based solely on its tokenizer. We will explore the significance of the tokenizer in the fine-tuning process of embedding models and discuss strategic approaches to optimize its effectiveness.