yeoda: your earth observation data access
This is a modal window.
Das Video konnte nicht geladen werden, da entweder ein Server- oder Netzwerkfehler auftrat oder das Format nicht unterstützt wird.
Formale Metadaten
Titel |
| |
Alternativer Titel |
| |
Serientitel | ||
Anzahl der Teile | 351 | |
Autor | ||
Lizenz | CC-Namensnennung 3.0 Unported: Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen. | |
Identifikatoren | 10.5446/69056 (DOI) | |
Herausgeber | ||
Erscheinungsjahr | ||
Sprache | ||
Produktionsjahr | 2022 |
Inhaltliche Metadaten
Fachgebiet | ||
Genre | ||
Abstract |
| |
Schlagwörter |
00:00
ElementargeometrieOpen SourceAbgeschlossene MengeRechter WinkelBeobachtungsstudieGüte der AnpassungComputeranimation
00:20
Bitmap-GraphikGoogle EarthOffene MengeWürfelMultiplikationDateiWürfelEinfache GenauigkeitRelativitätstheorieStrömungsrichtungSchnittmengeMini-DiscDatenbankProgrammierumgebungComputerarchitekturServerMAPTermDifferenteGewicht <Ausgleichsrechnung>BeobachtungsstudieSoftwareBlackboxDateiverwaltungZeichenketteBitmap-GraphikComputeranimation
02:12
GammafunktionHausdorff-DimensionFlächentheorieOperations ResearchElementargeometrieMetadatenKeller <Informatik>DateiBitmap-GraphikKlasse <Mathematik>WürfelMosaicing <Bildverarbeitung>Interface <Schaltung>AudiodateiSchreiben <Datenverarbeitung>Absolute GeometrieHilfesystemAbstraktionsebeneWürfelInformationSchnittmengeDimensionsanalyseKontextbezogenes SystemDateiElementargeometrieMetadatenModulare ProgrammierungKlasse <Mathematik>TesselationEin-AusgabeBildgebendes VerfahrenAudiodateiQR-CodeMinimumWort <Informatik>Computeranimation
Transkript: Englisch(automatisch erzeugt)
00:01
All right, good morning everyone. My name is Claudio Navaki, and, go to the microphone, sorry, sorry. Good morning, so my name is Claudio Navaki, and I'm presenting YODA, which stands for U.S. Observation Data Access, and it's an open source Python tool developed by the geodepartment at T-OVIN.
00:21
As you can see on this map, the current set of tools being able to deal with geospatial raster or earth observation data is quite extensive. So on the left side, we have some rudimentary packages which deal with file-based access
00:42
like GDAL or NetCDF4, which works quite well in terms of single file access or data sets, but not in terms of homogeneous access across different data collections. On the right side, we have some higher-level data, data cube tools, which either rely on some packages
01:02
on the left side, or implement their own software or data architecture to enable user-friendly performance and multi-file access to predefined data collections. However, those data cube tools,
01:21
however, those data cube tools, those data cube tools, sorry, however, those data cube tools are black box like the Google Earth Engine, or they introduce string and dependencies
01:45
on databases or servers which are needed to run in the background. Yoda instead cherry-picks from both sides by offering a flexible and transparent access to file-based data cubes,
02:02
and still maintaining a close relation to files on disk. And prerequisite only two things, a Python environment and files on disk. So how does Yoda actually work? So Yoda relies on several in-house developed software packages which are wrapping around
02:20
the basic packages you've seen before. So on the bottom, we have GeoSpade, which defines some basic geometries and tiles and how they relate to each other. On top of GeoSpade, you have Veranda, which unites those abstract geometries with actual IO classes to deal
02:42
with all kinds of data formats. And finally, on top, we have Yoda, which adds some dimensional context by interpreting file names with the help of GeoPathfinder, or by extracting metadata information from the files.
03:04
With this setup, Yoda accepts either data sets or files as input to initialize its data cube classes, and then those data cube classes can be used to spatially filter the data or to filter the data by the predefined dimensions.
03:24
And in the end, you can write or read the data to different data formats. So if you want to dive into the world of Yoda, please check out the documentation with the docs. Please feel free to contribute at GitHub, or check out some examples on the images
03:44
we provide at Docker Hub. And if you don't get the QR codes, I also have some handouts here if you're interested. Thank you. Thank you, Claudio.