How much “15-minutes” is your city? Using open data to measure walking proximity
This is a modal window.
Das Video konnte nicht geladen werden, da entweder ein Server- oder Netzwerkfehler auftrat oder das Format nicht unterstützt wird.
Formale Metadaten
Titel |
| |
Serientitel | ||
Anzahl der Teile | 351 | |
Autor | ||
Mitwirkende | ||
Lizenz | CC-Namensnennung 3.0 Unported: Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen. | |
Identifikatoren | 10.5446/68946 (DOI) | |
Herausgeber | ||
Erscheinungsjahr | ||
Sprache | ||
Produktionsjahr | 2022 |
Inhaltliche Metadaten
Fachgebiet | ||
Genre | ||
Abstract |
| |
Schlagwörter |
00:00
AbstandCoxeter-GruppeXML
00:15
Dienst <Informatik>Computeranimation
00:32
FlächeninhaltComputeranimation
00:48
JSONComputeranimation
01:01
AbstandAutomatische IndexierungQuick-SortMeterOrdnung <Mathematik>PolygonMultiplikationsoperatorPunktAutomatische IndexierungAbstandMAPComputeranimation
01:44
AbstandAutomatische IndexierungOffice-PaketAmenable GruppeSoftwareEin-AusgabePunktOffene MengeMAP
02:13
AlgorithmusDialekt
02:20
MAPAutomatische IndexierungMittelwertAlgorithmusKategorie <Mathematik>
02:34
Kategorie <Mathematik>Ordnung <Mathematik>UmwandlungsenthalpiePunktTeilmengeAlgorithmusInstantiierungComputeranimation
02:54
HypermediaAutomatische IndexierungAlgorithmusQuick-SortVerdeckungsrechnung
03:08
Offene MengeMAPAutomatische IndexierungPortal <Internet>Computeranimation
03:24
Stetige FunktionIdeal <Mathematik>EntscheidungstheorieOrdnung <Mathematik>Offene MengeMAPAutomatische IndexierungComputerspielDistributionenraumFlächeninhaltPortal <Internet>Computeranimation
04:20
Computeranimation
Transkript: Englisch(automatisch erzeugt)
00:00
Can you hear me? Yes. I'm Pier Giorgio from DataNext, Italy, and I'm presenting on behalf of my colleague, Beatriz. And this presentation is about 15-minute city. If you are not aware of the 15-minute city concept, it is nothing new, but became quite popular in the last years,
00:24
thanks to this guy, the professor Carlos Moreno, and also thanks to the mayor of Paris. Basically, a 15-minute city as a concept is a residential urban area in which most of the daily needs of residents can be met by walking or by cycling.
00:47
So, Beatriz started to ask about how much 15 minutes are our cities, and we started to think of Italian cities.
01:01
At the beginning of this year, she proposed to work on a proximity index in order to calculate at the polygon level the value of a sort of 15-minute-ness index. And she divided the entire Italy into a grid of more than 3 million hexagons, 250 meters side.
01:33
And then she assigned a value of the index, and the value is corresponding to the average time to reach daily points of interest on foot or by bike.
01:44
And which data are the input for the Arrigoli Implant. Basically, open street map data in particular points of interest that are listed here are amenities like food shops, restaurants, education, schools, banks and public offices and so on.
02:03
And road network. Of course, from the road network, she excluded the high-speed roads where pedestrians or bikers are not supposed to be. And we started from the Emilia-Romagna region, and then we launched the algorithm at the entire Italian level, this is Turin.
02:26
And this picture shows the average index, that is, the average value considering all categories. But we can, of course, select a specific category like, for instance, education in order to better understand
02:41
the 15-minute-ness regarding that specific subset of points of interest or entertainment like cinemas or theatres. Of course, the algorithm and the index itself is not thought to be a sort of mouth of the truth, that is, a marble mask we have in Rome.
03:08
Just like other indexes that have been already implemented by others cannot be considered as mouth of truth. To get closer to the truth, we should consider other data that are not available in open street map or are not fully available in open data portals.
03:35
And we started to work with the municipality of Ferrara, and the GIS department provided us aggregated data about population distribution.
03:46
The aggregation is based on the same hexagonal grid we used for the index. And by comparing the distribution of population with the index, we derived this second index.
04:00
We called it the score for the index, showing the areas where decision-makers by both public sector and private sector are supposed to take decision in order to improve the 15-minute-ness, so the quality of life of their city.
04:20
That's it. I thank you very much. If you have got any questions.