We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

#bbuzz: The Feature Store: where Data Engineering meets Data Science

Formale Metadaten

Titel
#bbuzz: The Feature Store: where Data Engineering meets Data Science
Serientitel
Anzahl der Teile
48
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Engineering features for machine learning is hard. Before you start, you need to know: are you developing the features for training the model (Python?) or for serving the model (Java/javascript/etc), and if both - how do you ensure consistency of your features between training and inferencing? Could anybody else in your organization find the feature useful in their model(s)? If you are using a traditional data warehouse, how do you retrieve the value of a feature from last year (that has now been overwritten with more recent data) to test my model on data from last year? How do you efficiently join features originating from different backend systems. In this talk, we will answer these questions in the context of the Feature Store. We will show how a Feature Store can provide a natural interface between Data Engineers, who create reusable features from diverse data sources, and Data Scientists, who experiment with predictive models, built from the same features. We will dive into the only fully open-source Feature Store for machine learning, Hopsworks, to better understand the potential of Feature Stores.