We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

#bbuzz: Mind your data! - Data quality for the rest of us

Formale Metadaten

Titel
#bbuzz: Mind your data! - Data quality for the rest of us
Serientitel
Anzahl der Teile
48
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
As software engineers, we take pride in our code quality. As data scientists, in the quality of our models and analyses. As a data engineer, I take pride in the quality of the datasets I provide access to. Everyone in IT works with data one way or another, be it producing, managing or using it. Yet like water for fish, we often fail to notice data because it is all around us. And, just like fish in the water suffer bad water quality, we suffer if our data quality decreases. Unlike the fish in the water though, we can actually all contribute to addressing data quality issues. In my talk, I want to encourage you to become more aware of data quality concerns. I will discuss what data quality is, how we can identify data quality issues and some strategies for addressing them. As a practical example, I will share our experiences with monitoring data quality using Amazon Research's deequ framework.