We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

#bbuzz: Deep learning in production: Serving image models at scale

Formale Metadaten

Titel
#bbuzz: Deep learning in production: Serving image models at scale
Serientitel
Anzahl der Teile
48
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Deep learning achieves great performance in many areas, and it’s especially useful for computer vision tasks. However, using deep learning in production is challenging: it requires a lot of effort for developing and running the infrastructure to serve deep learning models at scale. In this talk, we present a system for classifying images on one of the largest online classified advertising platforms. The main requirement for this system is to classify tens of millions of images daily and be able to operate reliably even during peak hours. It took a year and lots of trial and error to arrive at the system we currently use. We present the details of this journey and tell our story: how we approached it initially, what worked and what didn’t, how it evolved and how it’s working right now. Of course, we also walk you through the technical details and show how to implement a similar system using Python, AWS, Kubernetes, MXNet, and TensorFlow.