We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Understanding Neural Network Architectures with Attention and Diffusion

Formale Metadaten

Titel
Understanding Neural Network Architectures with Attention and Diffusion
Serientitel
Anzahl der Teile
141
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 4.0 International:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Neural networks have revolutionized AI, enabling machines to learn from data and make intelligent decisions. In this talk, we'll explore two popular architectures: Attention models and Diffusion models. First up, we'll discuss Attention models and how they've contributed to the success of large language models like ChatGPT. We'll explore how the Attention mechanism helps GPT focus on specific parts of a text sequence and how this mechanism has been applied to different tasks in natural language processing. Next, we'll dive into Diffusion models, a class of generative models that have shown remarkable performance in image synthesis. We'll explain how they work and their potential applications in the creative industry. This is a good talk for visual learners. I prepared schematic diagrams, which present main features of the nerual network architectures. By necessity, the diagrams are oversimplified, but I believe they will allow you to gain some insight into Transformers and Latent Diffusion models.