We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

From Jupyter Notebooks to a Python Package: The Best of Both Worlds

Formale Metadaten

Titel
From Jupyter Notebooks to a Python Package: The Best of Both Worlds
Serientitel
Anzahl der Teile
141
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 4.0 International:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
A Jupyter notebook is quite handy for rapid REPL (Read-Eval-Print-Loop) style tasks such as exploratory data analysis and data science. However, we would feel deficiencies in proper SW engineering supports at some point as the notebook grows to have larger and more complicated code. It is because the Jupyter notebook lacks several important features including code sharing, refactoring support, version control and advanced editing. Fortunately, traditional full-fledged IDEs, such as _VS Code_ or _PyCharm,_ are available at hand and they support these lacking features very well. Then, why don’t we take advantage of the best of both worlds? In this beginner-level hands-on talk, I will demonstrate how to transform Jupyter notebook workflows to a proper Python package using _VS Code._ I will also introduce several basic but essential refactoring recommendations. By doing so, you can use the package for several notebooks and even share with your colleagues and friends.