We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Scalable geospatial processing using dask and mapchete

Formale Metadaten

Titel
Scalable geospatial processing using dask and mapchete
Serientitel
Anzahl der Teile
156
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Dask is a flexible parallel computing library that seamlessly integrates with popular Python data science tools. With its task graph and parallel computation capabilities, Dask excels in managing large-scale computations on both the local machine as well as on a computing cluster. Mapchete, an open-source Python library, specialises in parallelizing geospatial raster and vector processing tasks. Its strengths lie in its ability to efficiently tile and process geospatial data, making it a valuable asset for handling vast datasets such as satellite imagery, elevation models, and land cover classifications. This talk delves into the integration of these two technologies, showcasing how their combined capabilities can be used to conduct large-scale processing of geospatial data. It will also show how we at EOX are currently deploying our infrastructure and which challenges we face when using it to process the cloudless satellite mosaics under the EOxCloudless product umbrella.
Schlagwörter