We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Mapping Soil Erosion Classes using Remote Sensing Data and Ensemble Models

Formale Metadaten

Titel
Mapping Soil Erosion Classes using Remote Sensing Data and Ensemble Models
Serientitel
Anzahl der Teile
156
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Soil loss by water erosion is projected to increase by 13 - 22.5% in the European Union (EU) and United Kingdom (UK) by 2050, leading to loss of cultivable land and soil structure degradation. Accurate mapping of soil erosion is crucial for identifying vulnerable areas and implementing sustainable land management practices. In this study, we introduce machine learning (ML) models to map soil erosion, leveraging their capabilities in categorical mapping. Unlike previous applications that primarily mapped the absence or presence of a soil erosion class, we propose an ensemble strategy using three ML ensemble models (CatBoost, LightGBM, XGBoost) with remote sensing data to map four classes of soil erosion (i.e No Gully/badland, Gully, Badland, Land-slides). The proposed model effectively captures spatiotemporal variations over Europe in the period of 2000 - 2022, with particular precision in mapping Land-slides. The proposed method advances soil erosion mapping across different spatial and temporal scales particularly in the EU, contributing to the development of targeted conservation strategies and sustainable land management practices.
Schlagwörter