We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A Projection-based Approach for Spatial Generalized Linear Mixed Models

Formale Metadaten

Titel
A Projection-based Approach for Spatial Generalized Linear Mixed Models
Serientitel
Anzahl der Teile
10
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Non-Gaussian spatial data arise in a number of disciplines. Examples include spatial data on disease incidences (counts), and satellite images of ice sheets (presence-absence). Spatial generalized linear mixed models (SGLMMs), which build on latent Gaussian processes or Gaussian Markov random fields, are convenient and flexible models for such data and are used widely in mainstream statistics and other disciplines. For high-dimensional data, SGLMMs present significant computational challenges due to the large number of dependent spatial random effects. Furthermore, spatial confounding makes the regression coefficients challenging to interpret. I will discuss projection-based approaches that reparameterize and reduce the number of random effects in SGLMMs, thereby improving the efficiency of Markov chain Monte Carlo (MCMC) algorithms for inference. Our approach also addresses spatial confounding issues. This talk is based on joint work with Yawen Guan (SAMSI) and John Hughes (U of Colorado-Denver).