We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A hybrid physics-informed neural network based multiscale solver as a partial differential equation constrained optimization problem

Formale Metadaten

Titel
A hybrid physics-informed neural network based multiscale solver as a partial differential equation constrained optimization problem
Serientitel
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In this talk, we present physics-informed neural networks (PINNs) constrained by partial differential equations (PDEs) and their application in approximating multiscale PDEs. From a continuous perspective, our formulation corresponds to a non-standard PDE-constrained optimization problem with a PINN-type objective. From a discrete standpoint, the formulation represents a hybrid numerical solver that utilizes both neural networks and finite elements. In our setting, the neural network approximates a fine-scale problem, and a coarse-scale problem constrains the learning process. We show that incorporating coarse-scale information into the neural network training process through our modelling framework significantly enhances the overall learning process and results in improved convergence properties and accuracy of the PINN method. The mathematical framework for such a formulation, and the relevance of the hybrid solver to numerical homogenization are discussed.