We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Skew morphisms of cyclic groups and complete regular dessins

Formale Metadaten

Titel
Skew morphisms of cyclic groups and complete regular dessins
Alternativer Titel
Complete regular dessins and skew-morphisms of cyclic groups
Serientitel
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In this talk we introduce a surprising correspondence between $(m,n)$-complete regular dessins and admissible pairs of skew-morphisms of the cyclic groups of orders $m$ and $n$. A skew-morphism $\varphi$ of a finite group $A$ is a permutation on $A$ such that $\varphi(1)=1$ and $\varphi(xy)=\varphi(x)\varphi^{\pi(x)}(y)$ for all $x,y\in A$ where $\pi:A\to\mathbb{Z}_{|\varphi|}$ is an integer function. We determine the pairs $(m,n)$ for which there exists exactly one dual pair of $(m,n)$-complete regular dessins, thus generalising an earlier result by Jones, Nedela and \v Skoviera (2008). This is joint work with Y.Q.Feng, Kan Hu and M. {\v S}koviera.