We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Autoscaling Apache Flink Applications

Formale Metadaten

Titel
Autoscaling Apache Flink Applications
Serientitel
Anzahl der Teile
69
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Streaming applications often face changing resource needs over their lifetime: there might be workload differences during day- and nighttime, or business-related events that cause load spikes. Being able to automatically adapt to these changes is a common requirement for production deployments. Apache Flink has supported stateful job rescaling since the early days, but so far this had to be done by stopping and restarting jobs manually. In the latest release (1.13), the Flink community introduced a much anticipated feature: autoscaling. Now, you can add machines to your cluster for triggering an automatic scale up, or remove machines for letting it scale down again! In this talk, we'll explore different deployment scenarios for streaming applications and explain how Flink users can benefit from autoscaling to enable new use cases, streamline day-to-day operations and avoid unnecessary costs. In addition, we’ll briefly describe how this feature was implemented and how it enables further resource elasticity improvements in the future, such as scaling controlled by Flink.