We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Taking AI/ML to the next level: Text!

Formale Metadaten

Titel
Taking AI/ML to the next level: Text!
Serientitel
Anzahl der Teile
69
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Classifying images into Cats or Hotdogs may make for great AI demos, but for many of us, it has limited $DAYJOB uses. What if you have loads of documents, or inconsistently-written text, or a mash of information? Fear not - the latest AI / ML techniques for text can help! With the help of Apache MXNet, scikit-learn, ElasticSearch and friends, we'll progress from a simple text-based ML system, to an advanced system with full linguistic understanding. We'll also cover some key concepts around building AI / ML systems, and some of the pitfalls that beginners risk encountering. Full example code provided! Along the way, we'll look at why text has historically been hard AI / ML, what the latest techniques are, and then Open Source libraries / frameworks implementing them. Thanks to the magic of cloud-hosted notebooks, you can follow along with the code as we go, and try some live coding if we all dare!