We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Search and Sushi; Freshness Counts

Formale Metadaten

Titel
Search and Sushi; Freshness Counts
Serientitel
Anzahl der Teile
69
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Search and ranking over datasets which are constantly evolving in real time is a challenging problem at scale. Updating the documents in the index with real time signals like inventory status and click through rates can improve the search experience considerably. The fields which needs to be updated at scale can be used as hard filters as part of the retrieval strategy or as another ranking signal. In this talk we’ll present an overview of the real time indexing architecture of Vespa.ai which supports true in-place partial updates of searchable fields, including tensor fields. We also compare the real time indexing architecture of Vespa.ai with search engines built on the Apache Lucene library.