We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Scaling Search Clusters with Apache Solr and Kubernetes

Formale Metadaten

Titel
Scaling Search Clusters with Apache Solr and Kubernetes
Serientitel
Anzahl der Teile
69
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Kubernetes is fast becoming the operating system for the Cloud and brings a ubiquity that has the potential for massive benefits for technology organizations. Applications/Microservices are moved to orchestration tools like Kubernetes to leverage features like horizontal autoscaling, fault tolerance, CICD, and more. Apache Solr is an open-source search engine platform built on an Apache Lucene library. It offers Apache Lucene's search capabilities in a user-friendly way. Lucidworks Inc runs over a thousand distributed-mode Apache Solr Clusters spread across several machines for a plethora of use-cases around Search and Analytics. The traffic demands a massive scale which creates scenarios of in-depth micro-management like operating systems upgrade, scaling cluster dynamically, etc, affecting the overall search experience. This talk is focussed on the intuition on addressing scaling clusters horizontally and vertically, on the basis of query traffic load, data ingestion throughput or any other relevant metrics by extending capabilities of Kubernetes and Apache Solr to achieve true physical and logical autoscaling, satisfying modern era SLAs and infrastructure cost. The talk concludes with how the solution discussed opens up the future scope of fine-grained scaling of search clusters.