We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Build Real-time Analytic Applications: The Easy Way

Formale Metadaten

Titel
Build Real-time Analytic Applications: The Easy Way
Serientitel
Anzahl der Teile
56
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Apache Druid is the open source analytics database that enables development of modern data-intensive applications of any size. It provides sub-second response times on streaming and historical data and can scale to deliver real-time analytics with data ingestion at any data flow rate – with lightning fast queries at any concurrency. Sounds great, right? But any large distributed system can be difficult and time-consuming to deploy and monitor. Deployment requirements change significantly from use case to use case, from dev/test clusters on the laptop to hundreds of nodes in the cloud. Kubernetes has become the de-facto standard for making these complicated systems be much easier to deploy and operate. In this talk you will learn about Druid's microservice architecture and the benefits of deploying it on Kubernetes. We will walk you through the open source project's Helm Chart design and how it can be used to deploy and manage clusters of any size with ease.