We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Algebraic quantum field theory meets homotopical algebra

Formale Metadaten

Titel
Algebraic quantum field theory meets homotopical algebra
Serientitel
Anzahl der Teile
15
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
An algebraic quantum field theory (AQFT) presents a QFT on Lorentzian manifolds as an assignment of algebras to spacetimes, subject to physical axioms (e.g. Einstein causality). Such algebras are interpreted as quantizations of the function algebras on the moduli space of a classical field theory. In many cases, e.g. the stack of a gauge theory, moduli spaces encode "higher structures". As a consequence, functions on such spaces form "higher algebras", which can be analyzed by homotopical algebra (à la Quillen). Therefore, to investigate the quantization of such moduli spaces, one needs to infuse AQFT with homotopical algebra, resulting in "homotopical AQFT", i.e. the assignment of "higher algebras" to spacetimes. After motivating our approach with a concrete application of homotopical algebra to the Cauchy problem of the Yang-Mills stack, I will provide a "working definition" of homotopical AQFT, emphasize its role in relation to gauge theories and present two toy examples arising via homotopy Kan extensions. Based on [arXiv: 1503.08839, 1610.06071, 1704.01378].