We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Axiomatic microlocal category.

Formale Metadaten

Titel
Axiomatic microlocal category.
Serientitel
Anzahl der Teile
15
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
I am going to present a construction of an infinity stable category associated to a closed symplectic manifold whose symplectic form has integer periods. The category looks like the Fukaya category of M with coefficients in a certain local system. One first define an infinity category C_{rR} associated to the product of two symplectic balls B_r times B_R whose objects are (roughly) graphs of symplectomorphic embeddings B_r to B_R and homs are positive isotopies (it is defined via listing axioms which characterize it). We have a composition C_{r_1r_2} times C_{r_2r_3} to C_{r_1r_3} so that we have an infinity 2-category C whose 0- objects are balls and the category of morphisms between B_r and B_R is C_{rR} One has a functor F_M} from C to the infinity 2 category of infinity categories, where F_M(B_r) is the category of symplectic embeddings B_r—>M. One also has another functor P between the same infinity categories and one defines the micro local category on M as hom(P,F_M).