We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

B-Methods: Geometric Integrators for Blowup Problems

00:00

Formale Metadaten

Titel
B-Methods: Geometric Integrators for Blowup Problems
Serientitel
Anzahl der Teile
22
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Time dependent nonlinear partial differential equations, like for example reaction diffusion equations, are usually solved by classical time marching schemes, like Runge-Kutta methods, or linear multi-step methods. Such equations can however have solutions which blow up in finite time, and in the blowup regime, the behavior of the solution is dominated by the non-linearity. I will show two different approaches how one can construct specialized numerical time integrators which take into account the physics of the underlying non-linear problem. I will show both theoretically and numerically that their performance can be orders of magnitude better than the performance of classical time integrators for such problems.