We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Large Long-time behaviour of numerical integrators for charged particle dynamics

Formale Metadaten

Titel
Large Long-time behaviour of numerical integrators for charged particle dynamics
Serientitel
Anzahl der Teile
22
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The Boris algorithm is the most popular time integrator for charged particle motion in electric and magnetic force fields. It is a symmetric one-step method, and it preserves the phase volume exactly. However, it is not symplectic. Nevertheless, numerical experiments confirm an excellent long-time near energy preservation of the system. In this talk we present a multistep extension of the Boris algorithm, which is explicit, symmetric, and has arbitrarily high order. Near preservation of energy and momentum for the underlying one-step method, and the boundedness of parasitic solution components are proved. A rigorous proof for the excellent near energy preservation of the Boris algorithm is still missing. (We thank Martin Gander for drawing our attention to this problem.)