We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Globally Super-Convergent Conservative Hermite Methods for the Scalar Wave Equation

Formale Metadaten

Titel
Globally Super-Convergent Conservative Hermite Methods for the Scalar Wave Equation
Serientitel
Anzahl der Teile
22
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The strengths of the schemes we will present are their high order of accuracy in both space and time combined with their ability to march in time with a time step at the domain of dependence limit independent of the order. Additionally, the methods are globally super-convergent, i.e. the number of degrees of freedom per cell is (m+1)^d but the methods achieve orders of accuracy 2m. We note that the L2 super-convergence holds globally in space and time, unlike most other spatial discretizations, where super-convergence is limited to a few specific points and often rely on the use of negative norms. Our primary interest of these schemes are as highly efficient building blocks in hybrid methods where most of the mesh can be taken to be rectilinear and where geometry is handled by more flexible (but less efficient) methods close to physical boundaries. In this work we restrict our consideration to square geometries with boundary conditions of Dirichlet, Neumann or periodic type. We provide stability and convergence results for one dimensional periodic domains. The analysis of the conservative method is quite different from the analysis of previous dissipative Hermite methods and introduces a, to our knowledge, novel technique for analyzing conservative schemes for wave equations in second order form. This is joint work with Thomas Hagstrom (SMU) and Arturo Vargas (Rice, LLNL).