We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Vectorize Your Open Source Search Engine

Formale Metadaten

Titel
Vectorize Your Open Source Search Engine
Serientitel
Anzahl der Teile
60
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Neural search (a.k.a. Vector search) has rewritten the standards of information retrieval in many different domains. Vector search can help you gather a better understanding of the user query intent, drive product recommendations, search across different source data (text, images, audio, video), deliver better results, improve personalization and create a more successful user experience. Vector search goes beyond keywords to harvest the potential of graphs and embeddings to match users to the intended document, product, job, picture, song, or video. As fascinating as this may sound it's easy to find ourselves lost in the deluge of new information. If you're struggling to get started, understand what vector search can bring to the party, add cool new models such as OpenAI models and want to avoid common pitfalls, this talk is for you.