We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Building MLOps Infrastructure at Japan's Largest C2C E-Commerce Site

Formale Metadaten

Titel
Building MLOps Infrastructure at Japan's Largest C2C E-Commerce Site
Serientitel
Anzahl der Teile
60
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We describe the system we built to support ML in search at Mercari, Japan’s largest C2C e-commerce platform. We start by describing the journey to enable the use of ML in a “traditional” term-based search infrastructure with high throughput and strict latency requirements. We also discuss the mixed blessing of rushing a successful proof of concept into production and the technical challenges this posed on the infrastructure side. Next, we discuss the nuts and bolts of data engineering, ETLs, training pipelines, and serving/monitoring our ML model in production. We also discuss some of the weaknesses of our initial homegrown system, including A/B testing and model monitoring. Finally, we discuss our efforts to evolve our homegrown system into a more modern MLOps infrastructure using an A/B testing framework and Seldon for traffic routing and model serving.