We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Tiny Flink — Minimizing the memory footprint of Apache Flink

Formale Metadaten

Titel
Tiny Flink — Minimizing the memory footprint of Apache Flink
Serientitel
Anzahl der Teile
60
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Apache Flink has been designed for, and is mostly used with large-scale real-time data processing use-cases. Companies report about TBs of data being processed per second, or TBs of state in huge clusters. But what if you need to process low-throughput streams? Running a full, distributed Flink cluster might be an overkill, as there’s quite a bit of overhead for distributed coordination. In this talk, we’ll explore options to reduce your resource footprint. We’ll dive deeper into Flink’s MiniCluster, allowing you to run Flink in-JVM for integration tests, as a micro service or just a small processing your data in Kubernetes. We will also discuss lessons learned from running MiniCluster in production for a service offering Flink SQL in the cloud. Attend this talk if you want to learn about Apache Flink and its various options to deploy and configure it.