We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Open Data Analytics API in GeoNetwork

Formale Metadaten

Titel
Open Data Analytics API in GeoNetwork
Serientitel
Anzahl der Teile
266
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In the OGC world, you have a catalog to look for metadata/datasets, and the OGC API Features to fetch the data, paginate, filter and so on. The use cases have evolved since then and data consumers expect more complete abilities from their data catalogs. Nowadays we want to analyze, understand and reuse our datasets and providing such tools is a great way to encourage data owners to share and open their warehouse. A data API could then offer: - Full text search on data points - Data fetching, paging, sorting and filtering - Data analytics, aggregation, computation - Data joining - And those operations should perform in an optimized and scalable manner. - It's what GeoNetwork has offered for decades now, and GeoNetwork is taking the move to opendata to address all those use cases. You might have heard about columnar formats, and columnar vector formats such as Arrow, Parquet… After an introduction of the context and the expectation of a well shaped data API, we’ll present different approaches and types of flow architectures - Warehouse formats - Static files (parquet) - Index - Databases (PostGIS, Cytus) - Api models and implementation - OGC API Features limitation - Duck DB - Pure SQL And compare the different stack in terms of efficiency depending on various use cases.