We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

A review of Mapillary Traffic Sign Data Quality and OpenStreetMap Coverage

Formale Metadaten

Titel
A review of Mapillary Traffic Sign Data Quality and OpenStreetMap Coverage
Serientitel
Anzahl der Teile
266
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Traffic signs are a key feature for navigating and managing traffic safely, affecting all of us on a daily basis. However, traffic sign datasets are lacking on open government data portals as well as OpenStreetMap (OSM). Mapillary’s computer vision capabilities can extract more than 1,500 classes of traffic signs globally from street-level imagery. Generated traffic signs are available on iD Editor, Rapid and JOSM Mapillary plugin to enrich OpenStreetMap data. Their team wanted to know how the accuracy of traffic signs detected by Mapillary compared with the reality on the ground (the ground truth). To answer this question they collected more than thousands ground truth data in San Francisco and used this information to produce the recall, precision, and positional accuracy of their machined generated traffic sign data. This provided some interesting insights in OpenStreetMap and the level of completeness and gaps of that dataset. In this talk, they will cover Mapillary’s traffic sign extraction capabilities, Mapillary generated traffic sign data against ground truth data and OSM’s traffic sign coverage in San Francisco’s downtown. They will be also addressing how data quality can be improved using various data collection techniques and the role of post-processing with Structure from Motion and control points annotations.