A QGIS plugin for local weather sensor data
This is a modal window.
Das Video konnte nicht geladen werden, da entweder ein Server- oder Netzwerkfehler auftrat oder das Format nicht unterstützt wird.
Formale Metadaten
Titel |
| |
Serientitel | ||
Anzahl der Teile | 266 | |
Autor | ||
Lizenz | CC-Namensnennung 3.0 Deutschland: Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen. | |
Identifikatoren | 10.5446/66335 (DOI) | |
Herausgeber | ||
Erscheinungsjahr | ||
Sprache |
Inhaltliche Metadaten
Fachgebiet | ||
Genre | ||
Abstract |
|
00:00
ZeitrichtungGüte der AnpassungPlug inProjektive EbeneStellenringMinkowski-MetrikComputeranimation
00:27
StellenringProjektive EbeneMinkowski-MetrikSoftwareLuenberger-BeobachterProgrammierumgebungVorlesung/KonferenzBesprechung/Interview
01:09
RechnernetzDateiformatBildschirmmaskePlug inDokumentenserverInformation RetrievalProzess <Informatik>Interface <Schaltung>ProgrammbibliothekOffene MengeWorkstation <Musikinstrument>Temporale LogikRichtungFrequenzOpen SourceAttributierte GrammatikWasserdampftafelTechnische OptikDokumentenserverAttributierte GrammatikDivergente ReiheInterface <Schaltung>ClientPrimidealZählenLokales MinimumElektronische PublikationMAPCASE <Informatik>TaskZeitreihenanalyseSpannweite <Stochastik>Leistung <Physik>Framework <Informatik>DateiformatFunktion <Mathematik>PackprogrammSoftwareOpen SourceMultiplikationInformationPlug inMultiplikationsoperatorLuenberger-BeobachterOffene MengeDialektRechter WinkelBitParametersystemFacebookNeuroinformatikSkalarproduktLageparameterArithmetisches MittelProgrammbibliothekTrennschärfe <Statistik>Strategisches SpielTabelleDatenstrukturMengeParallelrechnerDatenverwaltungComputeranimation
04:20
Computeranimation
Transkript: Englisch(automatisch erzeugt)
00:09
So, good afternoon everyone. I'm Emanuele Cappizzi, I'm from Politecnico di Mirano and today I'm going to present an EJAS plugin for local weather sensor data called ARPA Weather Plugin.
00:22
This is a project developed between the Italian Space Agency and Politecnico di Mirano. So, this plugin is able to facilitate the assets to ARPA Lombardia, which is an environmental protection agency in Northern Italy, as shown in the picture.
00:41
And the goal of this project is to analyze local climate zones in metropolitan city of Milan and correlate these local climate zones with air temperature that comes from both ground sensor data, which is the ARPA Lombardia network, and geospatial data and data observation technologies.
01:04
And this project is, as I said, developed together with the Italian Space Agency. The problem with the sensor data is that usually they come from different sources, so for example, there are air quality data, weather data in national networks, regional networks,
01:21
so it's like a complicated situation. And there are also heterogeneous data formats, for example, APIs, CSV files, also sometimes PDFs are used. And it's time consuming to data cleaning of these data sets that are sometimes pretty big
01:41
and it's a lot of processing tasks. So, our plugin manages API when it's possible and they are available. In our case, the last month data of meteorological sensor are provided with API, while CSV files are provided for archive data, so years in the past are available in CSV files.
02:07
And everything is performed with user-friendly interface. And we are using Pandas, which are efficient data frame handling library, Dask, which allows parallel computing and so efficiently manage big CSV files,
02:28
and Sotapai, which is a Python client for soaking up open data API, which is used by ARPA Lombardia. The repository is available on GitHub. And this is the structure of the plugin where it is possible to select the data source,
02:43
the range time, the type of sensor, the outlier removal strategy, and the province selection. And it is possible to start multi-point JS layer, for example, containing summary statistics such as mean, maximum, and the count of observation.
03:00
And it is possible to export the full-time series and sensor information, and also combining them with multiple output with time series and sensor information as well. So, this is the plugin that we developed. It is done to facilitate users to access to this data.
03:24
And it is possible to select the data source. So, from the APIs, the files are automatically downloaded and processed. And it is possible to select parameters like the year, the time range, and it is possible to export the CSV file containing time series
03:44
and all the necessary information that the user might need. On the right side, is it possible to see the attribute table and an example of a map that is automatically produced by the plugin where you can see the red dots are the temperature sensor already pre-processed.
04:04
And on the right button side, is it possible to see the time series that is provided as output of the plugin. So, for me, it's everything, and these are the contacts, and thank you for your attention.