We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Elliptic zastava

Formale Metadaten

Titel
Elliptic zastava
Serientitel
Anzahl der Teile
12
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
For a semisimple group G and a smooth curve C, open zastava space Z(G,C) is a smooth variety, affine over a configuration space of C. In case C is the additive or multiplicative group, Z(G,C) is isomorphic to a moduli space of euclidean or periodic monopoles. It carries a natural symplectic form, and the projection to the configuration space is an integrable system (open Toda lattice for G=SL(2)). I will explain what happens when C is an elliptic curve. This is a joint work with Mykola Matviichuk and Alexander Polishchuk.
Schlagwörter
Deutsch
Deutsch
Englisch
Englisch