We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The quasi fibered boundary (QFB) compactification of monopole moduli spaces

Formale Metadaten

Titel
The quasi fibered boundary (QFB) compactification of monopole moduli spaces
Serientitel
Anzahl der Teile
12
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The moduli spaces M_k of SU(2) monopoles on R^3 of charge k are among the oldest studied objects in gauge theory, yet open questions still remain, such as Sen's conjecture for their L^2 cohomology. I will discuss compactifications of these moduli spaces as manifolds with corners, with respect to which their hyperKahler metrics are of "quasi fibered boundary" (QFB) type, a metric structure which generalizes the quasi asymptotically locally euclidean (QALE) and quasi asymptotically conic (QAC) structures introduced by Joyce and others. This geometric structure, which is best understood by comparison to the simpler moduli space of point clusters on R^3, systematically organizes the various asymptotic regions of the moduli space in which charge k monopoles decompose into widely separated monopoles of charges summing to k. This is joint work with M. Singer and K. Fritzsch.
Schlagwörter