We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

QFT's for non-semisimple TQFT's

Formale Metadaten

Titel
QFT's for non-semisimple TQFT's
Serientitel
Anzahl der Teile
10
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Thirty years ago, work of Witten and Reshetikhin-Turaev activated the study of quantum invariants of links and three-manifolds. A cornerstone of subsequent developments, leading up to our current knot-homology conference, was a three-pronged approach involving 1) quantum field theory (Chern-Simons); 2) rational VOA's (WZW); and 3) semisimple representation theory of quantum groups. The second and third perspectives have since been extended, to logarithmic VOA's and related non-semisimple quantum-group categories. I will propose a family of 3d quantum field theories that similarly extend the first perspective to a non-semisimple (and more so, derived) regime. The 3d QFT's combine Chern-Simons theory with a topologically twisted supersymmetric theory. They support boundary VOA's whose module categories are dual to modules for Feigin-Tipunin algebras and (correspondingly) to modules for small quantum groups at even roots of unity. The QFT is also compatible with deformations by flat connections, related to the Frobenius center of quantum groups at roots of unity. This is joint work with T. Creutzig, N. Garner, and N. Geer. I will mention potential connections to related recent work of Gukov-Hsin-Nakajima-Park-Pei-Sopenko and promising routes to categorification, from a physics perspective.