We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Invariants of 4-manifolds from Khovanov-Rozansky link homology

Formale Metadaten

Titel
Invariants of 4-manifolds from Khovanov-Rozansky link homology
Serientitel
Anzahl der Teile
10
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Ribbon categories are 3-dimensional algebraic structures that control quantum link polynomials and that give rise to 3-manifold invariants known as skein modules. I will describe how to use Khovanov-Rozansky link homology, a categorification of the gl(N) quantum link polynomial, to obtain a 4-dimensional algebraic structure that gives rise to vector space-valued invariants of smooth 4-manifolds. The technical heart of this construction is the functoriality of Khovanov-Rozansky homology in the 3-sphere. Based on joint work with Scott Morrison and Kevin Walker.