We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Annular link Floer homology and gl(1|1)

Formale Metadaten

Titel
Annular link Floer homology and gl(1|1)
Serientitel
Anzahl der Teile
10
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The Reshetikhin-Turaev construction for the quantum group U_q(gl(1|1)) sends tangles to C(q)-linear maps in such a way that a knot is sent to its Alexander polynomial. Tangle Floer homology is a combinatorial generalization of knot Floer homology which sends tangles to (homotopy equivalence classes of) bigraded dg bimodules. In earlier work with Ellis and Vertesi, we show that tangle Floer homology categorifies a Reshetikhin-Turaev invariant arising naturally in the representation theory of U_q(gl(1|1)); we further construct bimodules \E and \F corresponding to E, F in U_q(gl(1|1)) that satisfy appropriate categorified relations. After a brief summary of this earlier work, I will discuss how the horizontal trace of the \E and \F actions on tangle Floer homology gives a gl(1|1) action on annular link Floer homology that has an interpretation as a count of certain holomorphic curves. This is based on joint work in progress with Andy Manion and Mike Wong.