We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Singular foliations in sub-Riemannian geometry and the Strong Sard Conjecture

Formale Metadaten

Titel
Singular foliations in sub-Riemannian geometry and the Strong Sard Conjecture
Serientitel
Anzahl der Teile
51
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Given a totally nonholonomic distribution of rank two $\Delta$ on a three-dimensional manifold $M$, it is natural to investigate the size of the set of points $\mathcal{X}^x$ that can be reached by singular horizontal paths starting from a same point $x \in M$. In this setting, the Sard conjecture states that $\mathcal{X}^x$ should be a subset of the so-called Martinet surface of 2-dimensional Hausdorff measure zero. I will present a reformulation of the conjecture in terms of the behavior of a (real) singular foliation. Next, I will present a recent work in collaboration with A. Figalli, L. Rifford and A. Parusinski, where we show that the (strong version of the) conjecture holds in the analytic category and in dimension 3. Our methods rely on resolution of singularities of surfaces, foliations and metrics; regularity analysis of Poincaré transition maps; and on a simpletic argument, concerning a transversal metric of an isotropic singular foliation.