We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Kuranishi and Teichmüller

Formale Metadaten

Titel
Kuranishi and Teichmüller
Serientitel
Anzahl der Teile
51
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Let X be a compact complex manifold. The Kuranishi space of X is an analytic space which encodes every small deformation of X. The Teichmüller space is a topological space formed by the classes of compact complex manifolds diffeomorphic to X up to biholomorphisms smoothly isotopic to the identity. F. Catanese asked when these two spaces are locally homeomorphic. Unfortunatly, this almost never occurs. I will reformulate this question replacing these two spaces with stacks. I will then show that, if X is Kähler, this new question has always a positive answer. Finally, I will discuss the non-Kähler case.