We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Isoholonomic foliations of moduli spaces of Riemann surfaces

Formale Metadaten

Titel
Isoholonomic foliations of moduli spaces of Riemann surfaces
Serientitel
Anzahl der Teile
51
Autor
Mitwirkende
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In this talk, I will introduce families of foliations on the moduli space of Riemann surfaces M_{g,n} which we call Veech foliations. These foliations are defined by identifying M_{g,n} to certain moduli spaces of flat structures and were first defined by Bill Veech. I will try to expose their specificities, both of geometric and dynamical nature. If time permits I will try to illustrate how the case g=1 is linked to certain differential equations whose solutions are special functions of distinguished interest. This is joint work with Luc Pirio.