We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Spatial ML model assessment and interpretation

Formale Metadaten

Titel
Spatial ML model assessment and interpretation
Serientitel
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
ProduktionsortWageningen

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
While significant progress has been made towards explaining black-box machine-learning (ML) models, there is still a distinct lack of diagnostic tools that elucidate the spatial behaviour of ML models in terms of predictive skill and variable importance. This contribution proposes spatial prediction error profiles (SPEPs) and spatial variable importance profiles (SVIPs) as novel model-agnostic assessment and interpretation tools for spatial prediction models with a focus on prediction distance. Their suitability is demonstrated in two case studies representing a regionalization task in an environmental-science context, and a classification task from remotely-sensed land cover classification. In these case studies, the SPEPs and SVIPs of geostatistical methods, linear models, random forest, and hybrid algorithms show striking differences but also relevant similarities. Limitations of related cross-validation techniques are outlined, and the case is made that modelers should focus their model assessment and interpretation on the intended spatial prediction horizon. The range of autocorrelation, in contrast, is not a suitable criterion for defining spatial cross-validation test sets. The novel diagnostic tools enrich the toolkit of spatial data science, and may improve ML model interpretation, selection, and design.