We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Data engineering for Mobility Data Science (with Python and DVC)

Formale Metadaten

Titel
Data engineering for Mobility Data Science (with Python and DVC)
Serientitel
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
ProduktionsortWageningen

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
This session introduces MovingPandas and DVC for Mobility Data Science. MovingPandas is a Python library for the analysis and visualization of movement data. It is built on top of GeoPandas and provides functions to analyze, manipulate and plot trajectories. To get a better idea of the type of analytics that MovingPandas supports, visit: https://movingpandas.org/examples DVC is a data version control (and machine learning experiment tracking) library. It follows a similar logic to source code version control systems (such as Git) and is typically used together with Git to keep track of data and experiments while Git keeps track of the source code. In this session, we will use DVC to keep track of our movement data analytics workflow. Participants are expected to come prepared with a working MovingPandas & DVC Python environment. Basic previous experience with (Geo)Pandas and version control systems (i.e. how pull, commit, push works in Git) is expected.