We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

xcube as a platform for spatiotemporal data analysis and visualization (Python tutorials)

Formale Metadaten

Titel
xcube as a platform for spatiotemporal data analysis and visualization (Python tutorials)
Serientitel
Anzahl der Teile
17
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache
Produzent
ProduktionsortWageningen

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Xcube is an open-source xarray-based Python package and toolkit that has been developed to provide Earth observation (EO) data in an analysis-ready form to users. xcube achieves this by carefully converting EO data sources into self-contained data cubes that can be published in the cloud. In this session you will learn about the ecosystem around xcube, which allows to access different data sources and turning the inputs into data cubes. These data cubes can then be easily used for spatiotemporal data analysis and visualization. After a brief introduction about the software components, we will go step by step though some example Jupyter notebooks and finally we will dive into a hands-on session with a little challenge. For the session you will need a laptop with an internet connection, some basic knowledge about Python and already installed miniconda (https://docs.conda.io/en/latest/miniconda.html) which is used to download the necessary Python packages for the session. Prior experience with Jupyter notebooks will be helpful, but not mandatory.